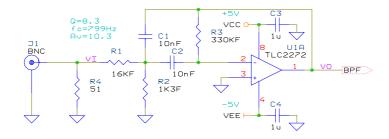
アクティブ BPF (Band Pass Filter) の設計例

Takayuki HOSODA


Jul. 28, 2004

アクティブ BPF

同相電圧歪みの少ない多重帰還型 BPF

図 1 に示す多重帰還型 BPF は部品点数も少なく, 2 つのコンデンサに同じ値を使え, 増幅度設定の自由度もあり, 同相電圧歪みの発生も少ないためよく使われています.

図 1: 多重帰還型 2 次 (1 次対) BPF 回路図

伝達関数は,

$$T(s) = -\frac{C_2 R_3}{(C_1 + C_2)R_1} \cdot \frac{s \frac{C_1 + C_2}{C_1 C_2 R_3}}{s^2 + s \frac{C_1 + C_2}{C_1 C_2 R_3} + \frac{R_1 + R_2}{C_1 C_2 R_1 R_2 R_3}}$$
(1)

となります. $C_0 = C_1 = C_2$ とすると,

$$T(s) = -\frac{R_3}{2R_1} \cdot \frac{s \frac{2}{C_0 R_3}}{s^2 + s \frac{2}{C_0 R_3} + \frac{R_1 + R_2}{C_0^2 R_1 R_2 R_3}}$$
(2)

となります. R_1 と R_2 の並列抵抗を,

$$R_{\rm p} = \frac{R_1 R_2}{R_1 + R_2}$$

として, T(s) を 2 次 BPF の標準形,

$$T(s) = h \cdot \frac{\frac{\omega_n}{Q}}{s^2 + s\frac{\omega_n}{Q} + w_n^2}$$
(3)

で表せば、利得係数 h, クォリティ・ファクタ Q, 自然角周波数 ω_n は、

$$h = -\frac{R_3}{2R_1}$$

$$Q = \frac{1}{2}\sqrt{\frac{R_3}{R_p}}$$

$$\omega_n = \frac{1}{C_0\sqrt{R_3R_p}}$$

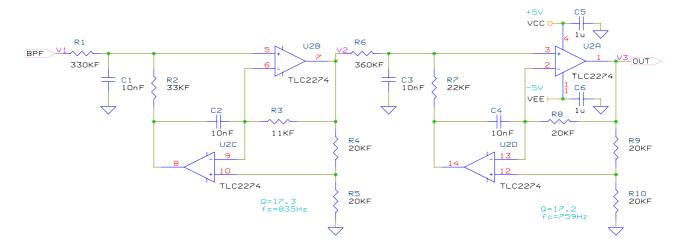
となります.

図 1 のフィルタの定数は、中心周波数 $f_c=800~{
m Hz}$ 、増幅度 $Av=10~{
m C}$ 設計し、素子値を ${
m E}24~{
m S}$ 列に丸めています。式 (4),(4),(4)に代入して再確認すると、

$$h = \frac{330 \, [\text{k}\Omega]}{2 \times 16 \, [\text{k}\Omega]} \simeq -10.3$$

$$Q = \frac{1}{2} \sqrt{\frac{330 \, [\text{k}\Omega]}{1.202 \, [\text{k}\Omega]}} \simeq 8.28$$

$$f_c = \frac{\omega_n}{2\pi} = \frac{1}{2\pi \times 10 \, [\text{nF}] \sqrt{330 \, [\text{k}\Omega] \times 1.202 \, [\text{k}\Omega]}} \simeq 799 \, [\text{Hz}]$$


となります.

多重帰還型の BPF では、式 (4) で分かるように Q による素子値の広がりが $4Q^2$ と大きいため、現実的な Q の範囲は Q<10 程度です.

素子感度が低く高Qでも安定動作するフリーゲ型 BPF

図 2 はフリーゲ (Fliege) 型 BPF 2 段構成による双峰特性の BPF です. フリーゲ型 BPF はオペアンプを 2 つ必要としますが、素子感度が低く、Q による素子値の広がりも小さいため、高い Q が必要とされる箇所で使用されます. GIC (Generalized Impedance Converter) 型に似た回路ですが、GIC 型が負荷インピーダンスとのマッチングを考慮しなければならないのに対して、フリーゲ型では OP アンプの出力で負荷を低インピーダンスで駆動できるため使いやすくなっています.

図 2: フリーゲ型 2 次 (1 次対) BPF 2 段構成による双峰特性の BPF 回路図

伝達関数は,

$$T(s) = -\frac{R_4 + R_5}{R_5} \cdot \frac{s \frac{1}{C_1 R_1}}{s^2 + s \frac{1}{C_1 R_1} + \frac{R_4}{C_1 C_2 R_2 R_3 R_5}}$$
(4)

となりますが, $C_0 = C_1 = C_2$, $R_4 = R_5$ とすると,

$$T(s) = -2 \cdot \frac{s \frac{1}{C_0 R_1}}{s^2 + s \frac{1}{C_0 R_1} + \frac{1}{C_0^2 R_2 R_3}}$$
 (5)

となり、利得係数 h, クォリティ・ファクタ Q, 自然角周波数 ω_n は、

$$h = -2$$

$$Q = \frac{R_1}{\sqrt{R_2 R_3}}$$

$$\omega_n = \frac{1}{C_0 \sqrt{R_2 R_3}}$$
(6)

$$\omega_n = \frac{1}{C_0 \sqrt{R_2 R_3}} \tag{7}$$

と表せます. 式 (7) より周波数を $R_2,\,R_3$ で調整ができ、式 (6) より Q は R_1 で独立に調整が出来 て、また素子の広がりも Q に比例しているのが分かります.このため高 Q が必要な回路用に使い やすいものとなっています.

実は、図 1 の多重帰還型の BPF 出力に直列に図 2 のフリーゲ型 2 段構成のフィルタを接続す るとバタワース (Butterworth) 特性の 3 次対 BPF になるようになっています.

図 3 に SPICE でのシミュレーション結果を示します. 図 3 中 BPF1 の線が図 1 の BPF の周 波数特性を、BPF2 の線が図 2 の BPF の周波数特性を、Overall の線が 2 つの回路を直列接続し たときの総合特性を示します. 但し、素子値を計算値から E24 系列の値に丸めたため、総合特性の 中心周波数や特性にはややずれがあります.

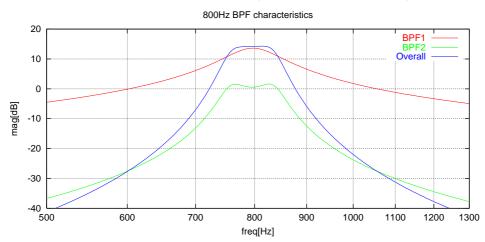


図 3: 周波数特性 (SPICE シミュレーション)

LPF (Low Pass Filter) から BPF への変換

BPF の Q や ω_n などの値は LPF の値を元に変換して得る事ができます.

LPF の極を ω と Q で表し、 $\omega_{\rm LP}$ 、 $Q_{\rm LP}$ とします。変換後の BPF の極を ω と Q で表し、 $\omega_{\rm BP}$ 、 $Q_{\rm BP}$ とします。目的とする BPF の中心周波数を f_0 、比帯域 を Q で表し、 $Q_{\rm BW}$ とします。

$$D = \frac{\omega_{\text{LP}}}{Q_{\text{LP}} Q_{\text{BW}}}$$

$$E = \left(\frac{\omega_{\text{LP}}}{Q_{\text{BW}}}\right)^2 + 4$$

$$G = \sqrt{E^2 - 4D^2}$$

$$Q_{\text{BP}} = \sqrt{\frac{E + G}{2D^2}}$$

$$M = \frac{\omega_{\text{LP}} Q_{\text{BP}}}{2Q_{\text{LP}} Q_{\text{BW}}}$$

$$W = M + \sqrt{M^2 - 1}$$

$$f_{\text{BPH}} = W f_0$$

$$f_{\text{BPL}} = \frac{f_0}{W}$$

2 次の LPF は 1 次対の BPF 二つに変換され、二つの BPF は各々 $f_{\rm BPH}$ と $f_{\rm BPL}$ の共振周波数と、 $Q_{\rm BP}$ と同じ値の Q を持ちます.

図 2 の回路も 3 次バタワース LPF から BPF への変換をもとに設計されたものです. 表 1 [代表的な LPF の正規化周波数と Q]の 3 次バタワースの 2 段目から,

$$\omega_{\rm LP} = 1.0, \qquad Q_{\rm LP} = 1.0$$

1 対の BPF を

$$f_0 = 800 \,[\text{Hz}], \qquad Q_{\text{BW}} = 8.6$$

の条件で各々の中心周波数 $f_{\mathrm{BPH}}, f_{\mathrm{BPL}}$ とクォリティ・ファクタ Q_{BP} を計算してみます.

$$D = \frac{1.0}{1.0 \times 8.6} \simeq 0.116279$$

$$E = \left(\frac{1.0}{8.4}\right)^2 + 4 \simeq 4.013521$$

$$G = \sqrt{4.013521^2 - 4 \times 0.116279^2} \simeq 4.006778$$

$$Q_{\rm BP} = \sqrt{\frac{4.013521 + 4.006778}{2 \times 0.116279^2}} \simeq 17.22181$$

$$M = \frac{1.0 \times 1.0}{2 \times 1.0 \times 8.6} \simeq 1.001268$$

$$W = 1.001268 + \sqrt{1.001268^2 - 1} \simeq 1.05164$$

$$f_{\rm BPH} = 1.05164 \times 800 \, [\rm Hz] \simeq 841.312 \, [\rm Hz]$$

$$f_{\rm BPL} = \frac{800 \, [\rm Hz]}{1.05139} \simeq 760.717 \, [\rm Hz]$$

このように変換されて値が求められました. 1 次 LPF 部は f_0 の中心周波数 f_1 と $Q_{\rm BW}$ の Q_1 を持つ 1 つの 1 次対 BPF に変換されます.

$$f_1 = 800 \,[\text{Hz}], \qquad Q_1 = 8.6$$

代表的なLPFの正規化周波数とQ

次数	段目	バタワース		チェビシェフ リプル = 0.1 dB		チェビシェフ リプル = 0.2 dB		チェビシェフ リプル = 0.5 dB		チェビシェフ リプル = 1.0 dB	
		f n (1)	Q _n	f _n (2)	Q _n	f _n (2)	Q _n	f n (2)	Q _n	f _n (2)	Qn
2	1	1.00000	0.70711	1.82045	0.76736	1.53520	0.79664	1.23134	0.86372	1.05000	0.95652
3	1	1.00000	0.50000	0.96941	0.50000	0.81463	0.50000	0.62646	0.50000	0.49417	0.50000
	2	1.00000	1.00000	1.29990	1.34093	1.18896	1.45950	1.06885	1.70619	0.99710	2.01772
4	1	1.00000	0.54120	0.78926	0.61880	0.70111	0.64590	0.59700	0.70511	0.52858	0.78455
	2	1.00000	1.30656	1.15327	2.18293	1.09483	2.43501	1.03127	2.94055	0.99323	3.55904
5	1	1.00000	0.50000	0.53891	0.50000	0.46141	0.50000	0.36232	0.50000	0.28949	0.50000
	2	1.00000	0.61803	0.79745	0.91452	0.74726	1.00091	0.69048	1.17781	0.65521	1.39879
	3	1.00000	1.61803	1.09313	3.28201	1.05708	3.70686	1.01773	4.54496	0.99414	5.55644
6	1	1.00000	0.51764	0.51319	0.59946	0.46032	0.62595	0.39623	0.68364	0.35314	0.76087
	2	1.00000	0.70711	0.83449	1.33157	0.80306	1.49172	0.76812	1.81038	0.74681	2.19802
	3	1.00000	1.93185	1.06273	4.63290	1.03823	5.26890	1.01145	6.51285	0.99536	8.00369
7	1	1.00000	0.50000	0.37679	0.50000	0.32431	0.50000	0.25617	0.50000	0.20541	0.50000
	2	1.00000	0.55496	0.57465	0.84640	0.54170	0.92694	0.50386	1.09155	0.48005	1.29693
	3	1.00000	0.80194	0.86788	1.84721	0.84643	2.09299	0.82272	2.57555	0.80837	3.15586
	4	1.00000	2.24698	1.04520	6.23324	1.02745	7.11866	1.00802	8.84180	0.99633	10.8987
8	1	1.00000	0.50980	0.38159	0.59318	0.34345	0.61944	0.29674	0.67658	0.26507	0.75304
	2	1.00000	0.60134	0.64514	1.18296	0.62334	1.32615	0.59887	1.61068	0.58383	1.95649
	3	1.00000	0.89998	0.89381	2.45282	0.87820	2.79620	0.86101	3.46567	0.85061	4.26608
	4	1.00000	2.56292	1.03416	8.08190	1.02070	9.25500	1.00595	11.5308	0.99707	14.2405
9	1	1.00000	0.50000	0.29046	0.50000	0.25057	0.50000	0.19841	0.50000	0.15933	0.50000
	2	1.00000	0.53209	0.44872	0.82199	0.42398	0.90034	0.39540	1.06040	0.37731	1.26004
	3	1.00000	0.65270	0.70537	1.58505	0.68990	1.79711	0.67271	2.21305	0.66224	2.71289
	4	1.00000	1.00000	0.91344	3.14478	0.90155	3.59800	0.88846	4.47802	0.88056	5.52663
	5	1.00000	2.87939	1.02675	10.1783	1.01618	11.6774	1.00459	14.5793	0.99761	18.0286

(1):振幅が1/2となる周波数

(2):振幅特性がリプルバンドを通過したところの周波数

次数	段目	ベッセル		直線位相フィルタ リプル = 0.05 度		直線位相フィルタ リプル = 0.5 度		過渡フィルタ 6dB までガウス特性		過渡フィルタ 12dB までガウス特性	
		f _n (1)	Q _n	f _n (1)	Q _n	f _n (1)	Qn	f _n (1)	Qn	f _n (1)	Q _n
2	1	1.27202	0.57735	1.20983	0.59970	1.10690	0.64430	-	-	-	-
3	1	1.32268	0.50000	1.04590	0.50000	0.82570	0.50000	0.97760	0.50000	0.96300	0.50000
	2	1.44762	0.69105	1.37104	0.80262	1.32915	0.95362	1.55488	0.80798	1.53515	0.820061
4	1	1.43017	0.52193	1.07530	0.55727	0.90455	0.60724	0.93986	0.59185	1.07427	0.58435
	2	1.60336	0.80554	1.58650	1.06505	1.61535	1.33788	1.66468	1.32034	1.93626	1.04347
5	1	1.50232	0.50000	0.94300	0.50000	0.70560	0.50000	0.66500	0.50000	0.81310	0.50000
	2	1.55635	0.56354	1.24797	0.69993	1.15879	0.85520	1.03172	0.83338	1.28322	0.79457
	3	1.75538	0.91648	1.83630	1.36407	1.90413	1.75917	1.60866	2.25999	2.17423	1.51980
6	1 2 3	1.60392 1.68917 1.90471	0.51032 0.61119 1.02331	0.98072 1.47007 2.07433	0.55072 0.89279 1.68590	0.78504 1.43552 2.15450	0.60212 1.16387 2.20161	0.64257 1.10294 1.52273	0.59136 1.18037 3.45448	0.82429 1.45485 2.18275	0.58719 1.09109 2.43665
7	1	1.68437	0.50000	0.86150	0.50000	0.62830	0.50000	0.48280	0.50000	0.62910	0.50000
	2	1.71636	0.53236	1.14752	0.68102	1.03845	0.83882	0.74943	0.81816	0.98600	0.80098
	3	1.82242	0.66082	1.71775	1.11426	1.74507	1.50023	1.18612	1.62527	1.61164	1.46887
	4	2.04949	1.12626	2.31748	2.02329	2.44306	2.65665	1.50153	4.93276	2.16815	3.73175
8	1	1.77847	0.50599	0.89961	0.54887	0.69579	0.60075	0.49795	0.58970	0.63938	0.58756
	2	1.83209	0.55961	1.36043	0.85777	1.28241	1.13187	0.86156	1.12387	1.12260	1.08463
	3	1.95320	0.71085	1.95159	1.35283	1.96434	1.85210	1.24045	2.15505	1.66716	1.92601
	4	2.18873	1.22567	2.53305	2.37132	2.61173	3.12109	1.48405	6.61340	2.07973	5.25715
9	1	1.85660	0.50000	0.79380	0.50000	0.57280	0.50000	0.38400	0.50000	0.50650	0.50000
	2	1.87840	0.51971	1.05961	0.67552	0.94888	0.83411	0.59848	0.80875	0.79343	0.79966
	3	1.94787	0.58941	1.60203	1.06025	1.60756	1.44956	0.96261	1.49011	1.29757	1.42028
	4	2.08041	0.76061	2.19499	1.60242	2.29217	2.21295	1.28433	2.78113	1.77953	2.47707
	5	2.32233	1.32191	2.76008	2.72735	2.93133	3.59232	1.47651	8.58036	2.10557	7.07042